
DRAFT COPY

Administrators Guide to
GARA

March 2000*

* Please check http://www.mcs.anl.gov/qos/ for the latest version of this document.

DRAFT COPY2

Contents
About GARA ...3

Resource Managers ...5
Installing GARA..5

Obtaining GARA...5
Before You Compile GARA...5
Compiling GARA..6
Configuring the setup_flow Script (Network Only) ..9
Configuring the Resource Manager..10
Configuring the Gatekeeper ..11

Testing GARA ...12
Testing the Resource Manager..13
Testing the LRAM Layer ..13
Testing the GARA API Layer...13

Reference ...15
Configuration Options for the Resource Manager ...15
Contact Information ..16

DRAFT COPY 3

Note: Before you read about administering GARA, you should have at least a passing familiarity
with Globus. You can learn more about Globus at http://www.globus.org. This guide
concentrates on describing GARA for someone that needs to install and maintain GARA. If you
need information on programming GARA, please see the Programmers Guide to GARA. If you
would like more information about the research being done with GARA, please see the papers
available at the Globus web site.

About GARA
The GARA architecture provides programmers with convenient access to end-to-end quality of
service (QoS) for programs. To do so, it provides mechanisms for making QoS reservations for
different types of resources, including computers, networks, and disks. A reservation is a
promise from GARA that an application will receive a certain level of service from a resource.
For example, a reservation may promise a certain bandwidth on a network or a certain
percentage of a CPU.

The GARA architecture is defined as a layered architecture with three levels of APIs and one
level of low-level mechanisms:

Note that ÒGARAÓ refers to two things: the ÒGARA Architecture,Ó which refers to the entire
diagram above, and the ÒGARA API,Ó which is the API for making a single reservation.

The GARA API has two interesting advantages. First, it allows you to make reservations either
in advance of when you need them or right at the time that you need themÑan immediate

High-Level APIs
Adds end-to-end reservation mechanisms for
networks, by making multiple reservations.

GARA API
Adds ability to make remote, authenticated (GSI)
reservations

Local Reservation API
Makes reservations with diverse resource types;
within single trust domain.

Resource Manager
Controls admission and enforces reservations for
particular resources.

Figure 1 − GARAÕs layered architecture

DRAFT COPY4

reservation. Second, you use the same API to make and manipulate a reservation regardless of
the type of the underlying resource, thereby simplifying your programming when you need to
work with multiple kinds of resources.

The GARA API can be considered a remote procedure call mechanism to communication with a
resource manager. A resource manager controls reservations for a resource: it performs
admission control and controls the resource to enforce the reservations. Some resources already
have the ability to work with advanced reservations, so the resource manager is a simple
program. Most resources cannot deal with advanced reservations, so the resource manager tracks
the reservations and does admission control for new reservation requests. Much of the research
in GARA has focused on building useful resource managers.

It is important to understand how this remote procedure call works:

When a program uses the GARA API to communicate with a resource manager, the
communication does not happen directly, but happens through the assistance of the Globus
gatekeeper. The gatekeeper performs three important service: authentication, to verify the
identity of the person making the reservation, authorization, to verify that the person is allowed
to make a reservation, and finally, the launches the gatekeeper service to handle the
communication with the resource manager.

When you are installing and configuring GARA, you will need to adjust all of these portions:

• You will need to compile the gatekeeper service and resource manager.
• You will need to configure the gatekeeper with the location of the GARA gatekeeper service

so that it can launch the service in response to requests from applications.
• You will need to configure the resource manager so that it understands the properties of the

underlying resource that it is controlling.

GARA-enabled Application
Uses the GARA API to request
reservations from a resource
manager.

Globus Gatekeeper
Controls remote access to a
resource manager by performing
authentication and authorization

GARA Gatekeeper Service
Invoked by the gatekeeper to
communicate directly with a
resource manager, by using the
LRAM API.

Resource Manager
Performs admission control,
monitoring of reservations, and
control of underlying resource.

DRAFT COPY 5

Resource Managers

Currently, GARA provides three different resource managers:

• A differentiated services network resource manager to provide quality of service over a
network.

• A CPU resource manager that uses the Dynamic Soft Real-Time (DSRT) scheduler1 for
controlling scheduling for a processes.

• A DPSS resource manager that allows exclusive access to a DPSS server.

Of these three resource managers, you are mostly likely to use the differentiated services and
DSRT resource managers.

To use GARA, any resource manager that you need must be running. The resource managers are
daemons that are executed once and left to run.

Installing GARA
This section describes how to obtain, compile, and configure GARA.

Obtaining GARA

Currently, GARA is available by request only. If you would like to receive the latest version of
GARA, please send mail to roy@mcs.anl.gov. Make sure to include ÒGARAÓ in the subject line
of your mail. We will be happy to provide you with a tarball containing the latest release of
GARA.

The latest information about GARA is available online from: http://www.mcs.anl.gov/qos/.

Before You Compile GARA

Before you can compile GARA, you must have Globus properly installed. More information
about Globus can be found at http://www.globus.org. Note that to install Globus, you will
have to first install SSLeay, a set of libraries providing security for Globus.

As part of your Globus installation, you will need to have:

• The ability to run a Globus gatekeeper. It can either be fully deployed so that you can access
it through inetd, or you can run it from the command-line. If you wish to have it accessible
through inetd, you will need to have requested a certificate for the gatekeeper.

1 DSRT was produced independently by the MONET group at the University of Illinois at Urbana-Champagne.
Although DSRT has been included in the GARA distribution, you can obtain the latest version and information
about DSRT from: http://cairo.cs.uiuc.edu.

DRAFT COPY6

• A certificate that allows you to be authenticated and authorized through the gatekeeper. To
learn more about requesting certificates for Globus, please refer to
http://www.globus.org/security/.

• A proper deployment so that you can compile GARA using the Globus include files and
libraries.

If you will be using the differentiated services resource manager for network reservations, you
will also need to have Tcl/Tk installed. The diffserv implementation of GARA requires that the
Tcl/Tk toolkit with Expect is installed on your system. You can learn more about Tcl/Tk and
download a recent version from http://expect.nist.gov. Expect is used for a single short
script that configures the routers with telnet. More information about this script is available
below, under Configuring the setup_flow Script.

Compiling GARA

Compiling GARA is quite straightforward. Assume that you have obtained GARA and placed it
into your home directory: ~/gara/. Within this directory is a script called build. It looks olike
this:

#!/bin/sh
CC=cc
CXX=CC
CFLAGS=Ò-g -vÓ
GLOBUS_DIR=/home/roy/globus/development/sparc-sun-
solaris2.7_pthreads_standard_debug
SSL_LIBRARY_DIR=/soft/pub/packages/SSLeay-0.9.0/lib

export CC CXX CFLAGS GLOBUS_DIR SSL_LIBRARY_DIR

autoconf
configure
make clean
make depend
make all
#
For portability reasons you might not want to do a make withdsrt..
in case: just comment out this line.
make withdsrt

To compile GARA, you need to modify the five variables at the top of this script:

• CC: This indicates what C compiler you are using.
• CXX: This indicates what C++ compiler you are using.
• CFLAGS: This indicates what flags should be passed to your compiler. In the example above,

which was on a Solaris installation, the —g option indicates that debugging information
should be included, and the —v option indicates that warnings should be printed out during
compilation. Note that for gcc, —v indicates that version information should be printed,
whereas —Wall turns on printing of warnings.

• GLOBUS_DIR: The location where the Globus include files and libraries can be found.

DRAFT COPY 7

• SSL_LIBRARY_DIR: The location where the SSL include files and libraries can be found.

If you will not be using DSRT, you can comment out the final line (make withdsrt). In this case,
the C++ compiler will not be used, just the C compiler.

Once you have changed these variables to be appropriate for your system, you can simply type
ÒbuildÓ to execute this script and build GARA.

Assuming that build executes with no errors, you will find the various pieces of GARA located
within the GARA directories: currently there is no Òmake installÓ to put everything into a
uniform location. Assuming that you have GARA in ~/gara/, you will find items in the following
locations.

Resource Managers
~/gara/resource_manager/programs/diffserv_manager
~/gara/resource_manager/programs/dsrt_manager
~/gara/resource_manager/programs/dpss_manager

GARA Gatekeeper Service
~/gara/gara/programs/globus_gara_gatekeeper_service

Test programs
~/gara/resource_manager/tests/diffserv_manager_test
~/gara/resource_manager/tests/dsrt_manager_test
~/gara/resource_manager/tests/dpss_manager_test
~/gara/lram/lram_diffserv_test
~/gara/lram/lram_dsrt_test
~/gara/gara/tests/gara_test

Configuring Cisco Routers (Network Only)

We are currently using CiscoÕs Modular QoS command line interface (MQC) for marking and
policing traffic on the edge routers. On the ingress side of the first-hop router, GARA uses an
existing, attached service-policy Òset-precedenceÓ, to mark packets of a specific flow with the
differentiated services codepoint (DSCP) 46. Policing is implemented with a token bucket
mechanism. Every premium flow has its own token bucket with a filling rate equivalent to the
reserved rate and with a depth that is configured by GARA. Note that we configure the policing
so that if your applications send more than their reservation, the excess traffic will be dropped.
This is similar to the Differentiated Services Working GroupÕs Expedited Forwarding PHB, and
we see it as important for ensuring that reserved traffic doesnÕt overwhelm other traffic. You can
change this behavior by editing the setup_flow script. (See Configuring the setup_flow Script,
below.)

For policing, we are currently using a token bucket depth that depends on the reservationÕs
bandwidth. For TCP the depth is (bandwidthÖ40), which relates to an estimated maximum
roundtrip-time of 25ms. For UDP we use a quarter of this value. There is no excess burst used.

DRAFT COPY8

To use the current CLI, our resource manager assumes that each input interface has an attached
service-policy named Òset-precedenceÓ. The resource manager will modify this service-policy
automatically.

Configuration steps:
#conf term
#policy-map set-precedence
#exit
#int <name-of-your-input-interface>
#service-policy input set-precedence
#exit
#exit

In addition to GARAÕs run-time configuration of the edge routers, you will need to pre-configure
the interior router interfaces to treat marked packets differently. Cisco provides several
mechanisms for this. Weighted Random Early Detection (WRED), Weighted Fair Queuing
(WFQ) and Priority Queuing (PQ) are the possible methods. In our testbed, we currently use
WFQ and PQ. Note that this configuration has to be done only once, before any reservations
have been.

We recommend the following configuration steps on the interior interfaces for WFQ and PQ.

conf term
class-map dscp
match ip dscp 46
exit
class-map priority-qos
match qos-group 99
exit
policy-map qos-control
class dscp
bandwidth <bandwidth_under_congestion_in_kbits_per_second>
shape average <actual_reserved_bandwidth_plus_layer_2_overhead>
queue 500
exit
class priority-qos
priority <optional bandwidth for low-latency>
exit
class class-default
queue 500
exit
exit
int <name-of-interior-interface>
service-policy output qos-control
exit
exit

Note: The bandwidth_under_congestion_in_kbits_per_second parameter contains the full
ATM overhead. Similarly, the bandwidth specified by the shape command also includes the full
ATM overhead. However, the latter is configured by the setup_flow script. The idea of the
shaping is to prevent premium traffic from exceeding the assigned bandwidth in the core

DRAFT COPY 9

network. The WFQ bandwidth is not updated to reflect the actual amount of reserved bandwidth
because the software is not able to handle this operation with an attached service-policy,
therefore shaping takes care of this.

Configuring the setup_flow Script (Network Only)

Configuring the setup_flow script is perhaps the most problematic part of configuring GARA.
The setup_flow script uses Expect with Tcl/Tk to telnet to a Cisco router and configure it. There
are two distinct elements that you may need to configure: The setup_flow script and the
setup_flow.cfg file.

The setup_flow script

The setup_flow script, as distributed, assumes that you are using CiscoÕs TACACS+, which
requires a username and password to log in. Furthermore, it assumes that once you log in, you do
not need to enter an ÒenableÓ command with a password to gain access to the configuration
commands that are needed to configure the router.

If you are not using TACACS+, or you need to use an ÒenableÓ command, you will need to
modify the setup_flow script. DonÕt worry! ItÕs fairly straightforward.

Around line 196 of the setup_flow script, youÕll see some commands that look like this:

spawn telnet $router
expect_after default { close; continue }

expect "name: " { send "$username\r" }
expect "word: " { send "$password\r" }

expect "#" { send "configure terminal\r" }

When the script is waiting for the router to send ÒPasswordÓ, the script uses the Ôexpect
Òname:˚ÓÕ command. In response, it sends the username, which is a variable configured
previously. Afterwards, it waits for the prompt, and sends Òconfigure terminalÓ.

If you router expects a different interaction, or provides different prompts, you can change the
interaction here. For example, if the router only prompts for a password, then expects you to use
ÒenableÓ, you might use:

spawn telnet $router
expect_after default { close; continue }

expect "word: " { send "$password\r" }
expect "> "Ó { send "enable\rÓ }
expect "word: " { send "$password\r" }
expect "#" { send "configure terminal\r" }

The setup_flow.cfg file

DRAFT COPY10

The setup_flow script is configured through the setup_flow.cfg file. Currently, itÕs a bit clumsy
to configure, but this will be changing in future versions of GARA.

Within the configuration script, you configure, for each router:

• The login ID and password.
• The IP address used to telnet to the router.
• The name of each ingress interface that can be configured dynamically.
• For each interface, the computers that are nearest to that interface. This is so the setup_flow

script can decide which interface is the appropriate one to configure to provide the quality of
service for a particular computer.

You will specify the routers as 1_ROUTER, 2_ROUTER, 3_ROUTER, and so forth. For router
1, you will specify the interfaces as 1_INTERFACE1, 1_INTERFACE2, and so forth. Router 2
would be 2_INTERFACE1, 2_INTERFACE2, and so forth.

Here is an example:

##
#
First specify the ingress router, which has two interfaces. Each
interface has a single computer attached to it.
#
1_ROUTER ingressrouter.mcs.anl.gov
1_USERNAME gara_user
1_PASSWORD some_clever_password
1_INTERFACE1 atm4/0/0 140.221.48.100
1_INTERFACE2 atm5/0/0 140.221.49.100
#
The next router
#
2_ROUTER egressrouter.mcs.anl.gov
2_USERNAME username
2_PASSWORD password
2_INTERFACE1 atm4/0/0 140.221.38.100
2_INTERFACE2 atm5/0/0 140.221.39.100
#
##

If you needed to modify the setup_flow script, as described above, your changes may impact
how you create this configuration file. For example, you may choose to put the ÒenableÓ
password into this configuration file.

Configuring the Resource Manager

You can configure the resource manager with a configuration file, or with command-line options
when you run the resource manager. Command-line options always override options in the
configuration file.

DRAFT COPY 11

Here is a sample configuration file for the differentiated services resource manager. It is located
in a file named Òdiffserv_manager.conf Ó in the same directory as the diffserv_manager
executable.

A Configuration file for the Diffserv Manager
Port 5692
Quantity 10000
ClearSlotTable true
Verbose true

First we must specify the number of ingress/egress router
The current version supports up to 5 edge routers
NoOfRouters 2
Then the addresses served by them
The resolution of router address end-point address is
done in setup_flow.cfg
IPAddressesServed[1] 140.221.48.162,140.221.48.146
IPAddressesServed[2] 140.221.48.98,140.221.48.114

ÒPortÓ is the port used for TCP communication with the resource manager.
ÒQuantityÓ is the amount of bandwidth that the resource manager will allow to be given out. It is
in kilobits per second.
ÒVerbose trueÓ indicates that the resource manager will print information about what it
happening to the screen.
ÒNoOfRoutersÓ is the number of routers that can be configured.
ÒIPAddressesServed[n]Ó are the machines that are controlled by the routers. (This is only needed
for the diffserv_manager, not the dsrt_manager or the dpss_manager.) You will notice that this
information is duplicated in setup_flow.cfg. A future version of GARA will unify these
configuration files to avoid that. Note that if an address is not in the configuration file, the
resource manager will not allow a network reservation to be made.

For more details about configuring the resource manager, see the Reference below.

Using the DSRT Manager

For the DSRT manager to work correctly, you will need to have run the DSRT program CpuSvc
as well. For more information about this, see ~/gara/dsrt.

Configuring the Gatekeeper

Globus has a file named Ò grid-services.confÓ. This file informs the gatekeeper what
programs to run in response to different requests. For example, when you submit a job to the
ÒforkÓ service, the grid- services.conf file will have information about where the fork job-
manager process is.

DRAFT COPY12

For GARA, you need to add a line describing where the GARA gatekeeper service is. If you
have installed GARA in /homes/roy/gara/ , then the gatekeeper service will be in
~/gara/gara/programs/globus_gatekeeper_gara_service, and you will add a line to the
grid-services.conf file like this:

gara-service stderr_log -
/homes/roy/gara/gara/programs/globus_gatekeeper_gara_service gara_service

(Note that this is all one on line, although it has been wrapped here.)

This indicates that the gatekeeper should respond to requests for the gara-service by running
the globus_gatekeeper_gara_service program with a single argument Ò gara-serviceÓ.

Testing GARA
This section describes some basic tests to make sure that GARA is functioning properly. In all of
the following descriptions, it is assumed that you have installed GARA in ~/gara/. If you have
installed it elsewhere, you will need to adjust the paths of the programs that are used.

Testing the setup_flow script (Network Only)

You can run the setup_flow script from the command line to make sure that it runs correctly with
your Cisco routers. In normal usage, the diffserv_manager will always run the script for you.
Setup_flow has a slew of command-line parameters:

setup_flow setup/teardown setup_flow.cfg source-ip-address source-port
 destination-ip destination-port bits-per-second burst-size
 burst-size-exceed acl-to-use protocol priority-queueing

Here are what the parameters mean:

• setup/teardown: If you use ÒsetupÓ, the reservation will be configured on the router. If you
use ÒteardownÓ, the configuration that was previously made will be removed.

• source-ip-address: The numeric dotted IP address of the sender.
• source-port: The port of the sender
• destination-ip: The numeric dotted IP address of the receiver.
• destination-port: The port of the receiver.
• bits-per-second: How fast data can be sent, in bits per second.
• burst-size: The maximum allowable burst, in bits per second.
• burst-size-exceed: How long the burst can be, inÉ ?
• acl-to-use: A number between 100 and 199, inclusive. Each reservation has a unique ACL.
• protocol: Either ÒtcpÓ or ÒudpÓ.
• priority-queuing: Either 1, to indicate the priority-queuing should be used, or 0, to indicate

that it should not be used.

DRAFT COPY 13

You should both setup and teardown a reservation using the setup_flow script. If there are any
errors in the interaction with the router, this is the time to discover and repair them.

Testing the Resource Manager

Run the manager that you would like to test:

• diffserv_manager, for the differentiated services implementation
• dsrt_manager, for CPU reservations.
• dpss_manager, for DPSS reservations.

In ~/gara/resource_manager/tests, you will find corresponding test programs:

• diffserv_manager_test, to test the differentiated services implementation
• dsrt_manager_test, to test the CPU reservations.
• dpss_manager_test, to test the DPSS reservations.

Each one takes a simple set of parameters:

diffserv_manager_test <ip-address-1> <ip-address-2>

The ip-addresses are the ones of the computers involved in the reservation, and they
should be in the diffserv_manager.conf file and the setup_flow.cfg file.

dsrt_manager_test

This should take a process ID as a parameter, but it doesnÕt.

dpss_manager_test

This should take a process ID as a parameter, but it doesnÕt.

Testing the LRAM Layer

First make sure that the appropriate resource manager is running. You will find two LRAM test
programs in ~/gara/lram:

• lram_diffserv_test: to test the differentiated services implementation
• lram_dpss_test: to test the CPU reservations.

They are run exactly as the resource manager tests above, but they use the LRAM API (which is
also used in the gara gatekeeper service) to communicate with the resource manager.

Testing the GARA API Layer

Currently, there is only a test for the GARA API that makes differentiated services reservations.

DRAFT COPY14

You will find a program named gara_test in ~/gara/gara/tests. This is a full-blown test of the
GARA API, and therefore you need to run grid-proxy-init before you execute gara_test, or
you will not be authenticated properly. The basic test requires three parameters: the gatekeeper
contact string, and two valid IP addresses (addresses that are in the diffserv_manager.conf.). An
example use of gara_test might look like:

./gara_test -c "dslnet2.mcs.anl.gov:754:/C=US/O=Globus/O=Argonne
National Laboratory/OU=Mathematics and Computer Science
Division/CN=dslnet2.mcs.anl.gov" —1 140.221.48.162 —2 140.221.48.98

Note that often the gatekeeper contact string will need to be contained in quotes because many
contact strings contain spaces.

DRAFT COPY 15

Reference

Configuration Options for the Resource Manager

Each resource manager can be configured either on the command line or in a configuration file.
Options specified on the command line always override options specified in a configuration file.

Here are the command-line parameters that you may use:

-p <number> The port number to use for communication.
Defaults:

5692 for the diffserv_manager
5693 for the dsrt_manager
5694 for the dpss_manager

-q <number> The quantity that can be reserved.
For the dsrt_manager, this should be 0-1.
For the diffserv_manager, this is in kbps.

-f <name> The name of the slot table where reservations are stored.
Defaults:

diffserv_manager.slot_table for the diffserv_manager
dsrt_manager.slot_table for the dsrt_manager
dpss_manager.slot_table for the dpss_manager

-c Clear slot table. If you donÕt clear it, reservations that were made
during a previous invocation of the resource manager will be kept.

-x DonÕt really bind reservations. This will do everything except provide
the QoS to the reservations: routers wonÕt be configured, and DSRT
wonÕt be used.

-v Give verbose messages.
-m <method> Publication method. This can be one of:

web: Save in an html file
file: Save in a human-readable file.
mds: Save in the MDS.

-h help
-l location of logging file (defaults to name.log, where name is the name

of the resource manager. For exampl,e Ò diffserv_manager.logÓ)

DRAFT COPY16

Configuration files are named simply:

Resource Manager Configuration File
diffserv_manager diffserv_manager.conf
dsrt_manager dsrt_manager.conf
dpss_manager dpss_manager.conf

Here are the commands you may use in configuration files:

Port <number> The port that the resource manager listens to.
See above.

Quantity <amount> The quantity that can be reserved. See above.
SlotTableFilename <name> The file name that the is used to store

reservations. See above.
ClearSlotTable <true | false> Clear the slot table, or not, depending on Òtrue

or ÒfalseÓ.
DontReallyBindReservations <true | false> DonÕt actually provide QoS. See above.
Verbose <true | false> Turn on verbose mode. See above.
Publication Method See —m above.
LDAPDistinguishedName Where to publish the MDS information.
MDSPublishPassword The password to use to access the MDS
WEBPublishFile The file to publish the HTML file into
FILEPublishFile The file to publish the human-readable

reservation information into.
LoggingFileName The file to save the running log of what

happens in the resource manager. See the —l
option above.

Note that there are a few additional commands used in the diffserv_manager.conf file, and they
are essential:

NoOfRouters How many routers are configured
IPAddressesServed[n] The list of IP addresses (numeric dotted form) attached to a router.

These are the addresses that can receive QoS.
SmallestACL The smallest ACL that can be used by the router. Defaults to 100.
LargestACL The largest ACL that can be used by the router. Defaults to 199.

Contact Information

For more information about GARA, you can refer to the GARA web page:
http://www.mcs.an.gov/qos/.

DRAFT COPY 17

For technical information about GARA, as well as information about collaborations and plans for
future work, you should contact:

Ian Foster(foster@mcs.anl.gov)
Alain Roy (roy@mcs.anl.gov)
Volker Sander(sander@mcs.anl.gov)

